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For the booster at Fermilab, nominal design values of the 

radial and the vertical tunes are 6.7 and 6.8, respectively. 

The operating point is therefore on the fourth-order, normal 

coupling resonance 2vx + 2v 
YL = 27 which is driven by the 27th 

harmonic component of a normal octupole field 

Bx(x,y;d = (B;"(s)/6&y3+3x2y), 
1 1 1 

By(x,y;d = (B. (s)/6) (x3-3~~). (1) 

Since the periodicity of the booster is 24, this harmonic component 

may arise only from random fluctuations in the octupole field 

from magnet to magnet or possibly from some special devices placed 

around the ring. 

During January and February in 1973, a series of tune mea- 

surements were made at various energies. The measurement revealed, 

among other things, that the correction of the end field in F 

magnets was not perfect. As a result, the radial tune is signifi- 

cantly lower than the design value at high energies, where there is 

no simple way of making a substantial correction, and the momentum 

dependence of radial tune is an order of magnitude larger than 

expected. 1 The best estimate of tunes2 and the chromaticity at 

high energies* are v 
X 

= 6.64, vy = 6.79, Avx = -17(Ap/p) and. 

"The chromaticity depends somewhat on the correction sextupole 
current. 
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AvY = 4(Ap/p). With the expected momentum spread (Ap/p) = 

+ 0.6~10 -3 in the beam, Avx(total) = 0.02 and Avy(total) = 0.005. 

In Fig. 1, this is indicated as a rectangle B and the design 

operating point is marked as A. Nearby third- and fourth-order 

resonances are shown by solid (normal resonances) and dashed (skew 

resonances) lines: 

normal sextupole resonances (1) 3v = 20 
X 

(2) vx t 2vy = 20 

normal octupole resonances 

(10) 2vy - vx = 7 

(3) 4vx = 27 

(4) 4vy = 27 

skew sextupole resonances (6) 3vy = 20 

(7) 2vx t vy = 20 

skew octupole resonances 

(5) 2vx t 2vy = 27 

(8) vx + 3v, = 27 

(9) 3vx t vy = 27 

(11) 3vx - vy = 13. 

Since these resonances are all driven by imperfection harmonics, 

their effects are expected to be negligible except for (8). Part 

of the beam represented by rectangle B is exactly on this resonance 

which will be driven by the 27th harmonic of a skew octupole 

field 

Bx(x,y;s) = (B;I'(s)/6)(x3-3xy2), 
1 t I 

By(x’y;s) = (Bl (s)/6)Cy3-3x2y>. (2) 

Recently, it has been observed, at least in a qualitative manner, 
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that the vertical emittance of the beam increases when the radial 

emittance of the beam is made larger by a multi-turn injection' 
% 

and this may have contributed to the reduction of the main-ring 

transmission efficiency. Since the beam intensity and the radial 

emittance of the beam are not controlled independently, one cannot 

exclude a vertical coherent oscillation induced by the self field 

of a high-intensity beam. This oscillation may eventually be 

smeared out by the tune spread, resulting in an increase in the 

vertical emittance. It is even conceivable that, during the long 

injection time of a multi-turn injection, the vertical position 

and angle of the injected beam fluctuate and cause an apparent 

increase in the emittance. 

The purpose of this report is to demonstrate a possibility of 

increasing the vertical emittance through fourth-order coupling 

resonances 2vx t 2v Y = 27 and vx + 3v Y = 27. Each resonance is 

treated separately as an isolated one so that there will be no 

multi-resonance effect. 4 This is justified as the operating point 

here is very close to one resonance only and all resonances are 

expected to be weak. Another assumption is that the zeroth (average) 

harmonic component of normal octupole field is much smaller than 

the 27th harmonic of either normal octupole field or skew octupole 

field. In general, average octupole field (and certain other higher 

multipole fields) is important in creating outer stable regions in 

phase space. 5 Since one is primarily interested in the nonlinear 

deformation of the inner stable area, the neglect of the effect of 

average octupole field should not be too serious a defect unless the 

*The reduction was from 95% (single-turn injection) to 60% in April 
and to 80% in June, 1974. 
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average fie Id is so large that there is no division of phase space 

into two or more regions. 

Nonlinear betatron motion in the ideal booster has been in- 

vestigated by S.C. Snowdon. 6 A detailed analytical treatment of 

nonlinear resonances can be found in his report and in a report 

by L.C. Teng.' Snowdon calculated the amplitude dependence of 

tunes due to 3vx = 24 and vx t 2vy = 24 resonances as well as due 

to the average octupole field. A discussion on the four-dimensional 

phase space for an isolated coupling resonance can be found, for 

example, in a report by A.G. Ruggiero. 8 

II. Invariant of the Motion 

An isolated, nonlinear coupling resonance of the form 

nv x x tnv YY = k; nxny + 0, lnxl + In,l~ 3 (3) 

is treated here in the lowest-order approximation. In the Hamil- 

tonian which describes the motion, only one nonlinear term with 

the slowest azimuthal variation is retained. Betatron motion of a 

particle is specified by 

x = T T COS(V~~~ + ax), 

y = 4% /q COS(V~~~ + ay). (4) 

Here, phase angles @x and @,, which increase by 2~ every revolution, 

betatron oscillation parameters 6, and By and tunes vx and vy are all 

calculated from the linear property of the field. If there is no 

linear field, Wx, W , ax and ay are constant of the motion and Y 
the maximum value of Wx(Wy) in a beam multiplied by IT is the raidal 

(vertical) emittance. When nonlinear fields are introduced, one 

can describe the motion in terms of (Wx, ax, 
I W 

Y' aY' *s> instead of 

"It is customary to take W /2 and W /2 as canonical variables. 
However, this is not necessary for sreserving the Hamiltonian 
formalism. 
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the original variables (x, dx/ds, y, dy/ds; s). The new Hamil- 

tonian is simply the nonlinear part of the original Hamiltonian.Y 

Another method developed by Sturrock5 adopts the Lagrangian for- 

malism and calculates the change in W 
X,Y and a X,Y from an invari- 

ant integral which is called the perturbation characteristic 

function. 10 In either formalism, one can construct two invariants 

of the coupled motion and the knowledge of these invariants is 

sufficient to find the range of the variation of Wx and W . What Y 
is not available is the information on each phase ax and a and Y 
the change of dependent variables W 

X,Y and a X,Y as a function of 

the independent variable s. For example, the rate of growth for 

W X,Y can be found only by solving equations of motion in some form. 

In this note, the formalism by Sturrock is adopted bacause of the 

simplicity of the expression for driving terms. 

The operating point (vx, v,) under consideration is assumed to 

have the amount of detuning E, 

nv xx +nv YY =k+e. 

The nearest point on the resonance is (vxo,vyo) 

nv x x0 tnv Y YO =k 

so that 
2 

E x - = vx - v x0 = nxe/Cnx2 + n 
Y ) 

5 v = nye/(nx2 + n 2 
EY Y - vYo Y ) . 

(5) 

(6) 

(7) 

Two invariants of the coupled motion are 

@X 
E DKxmK n cos(nxax +na Y Y Y 

+ 6) - eKX 

cp +na Y 
5 DKxmK 

Y n cos(nxax Y Y + 6) - &KY '/(2ny) (8) 

where K 
X,Y = Jwx y 3 m = lnxl and n = lnyle The amplitude and phase 

3 
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of the driving term are D and 6, respectively, and these must be 

evaluated using linear motion parameters BxO, B $ yo' x0 and C) YO 
that belong to the point (vxo, v 

YO ) on the resonance. However, 

as jel<<l, one may substitute linear motion parameters of the 

operating point (vx, v,). By taking the difference of two in- 

variants, one can get another invariant which is more familiar, 

Kx2/nx - Ky2/n Y = invariant 

or 

nW -nW Y x XY = invariant. (9) 

For the motion to be real, Kx and KY must vary such that 

Icos(nxax + nyay + S)l<l with constant values of Qx and Qy. Values 

of Q X¶Y are of course specified by the initial condition. In the 

following section, two coupling resnances, 2vx + 2v 
Y = k and 

V x + 3v Y = k, are studied in detail. 

III. Nonlinear Deformation 

A. 2vx+2v Y = k + E; nx = n = 2. Y 

It is unlikely that the operating point of the booster is 

very close to this resonance during-the acceleration. Nevertheless, 

it is interesting to see the possible deformation arising from this 

reosnance and compare with the deformation due to vx + 3v Y = k. 

Also, the expression for two invariants of this resonance is amenable 

to a simple algebraic treatment. 

The driving term is 

D exp(i8) = ~1/6~~~~ds[B~"/(Bp)]~xo~yo x 

expCi(2vxo$xo + 2v yo+yo’ * 10) 

One can rewrite two invariants as 
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x = u2v2w + u2 > 

1-I = u2v2w + v2 (11) 

where 

U = 2477 Kx, 

v=2/m K Y' 

w = -(IeI/e)cos(2ax + 2ay + S), 

h = -(161a//E3)D@x, 

lJ = -(16/E//E3)Drny. (12) 

Two-dimensional relation (11) can be reduced to a one-dimensional 

form by eliminating the vertical "amplitude" v, 

(13) 

where u 2 - x + p z v2 must always be positive. From the asymp- 

totic and the limiting behaviors of w(u), 

w-t-u -2 asu-+m, 

w + Au-~(~-A)-' as u + 0 (h<u), 

w -t v(X-v> -I (u2-A+~)-1 as u -t /X-u (X>u), 

one can see that the condition [w/Z1 gives a bounded region of u 

only when turning points of w(u), dw/du = 0, exist outside the 

region Iw(u)lil. The deformation of the stable area is obtained by 

the limiting condition 

dw/dn = 0 at w = tl or -1. 
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In the figures above, the motion is stable between A and B. The 

motion between C and D is the limiting case. From (13) 

dw/du = 2u -3(u2-x+p)-2(u4-2xu2+~2-W (14) 

and dw/du = 0 at u = uM, 

2 
uM = hMi$, (15) 

From the requirement that both uM2 and vM2 5 uM2 - X f u must 

be real and non-negative, the only solution for dw/du = 0 is 

2 
uM = X + fi with h>O and ~20. U-6) 

The maximum deformation may be found by taking the initial 

values u. and v. at w = tl and using w(u,> = -1 as an additional 

condition. It is easy to see that 

2 
uM =xtfi=Jx 07) 

2 2 
vM = u -XQ.l=l-Ji; (18) M 

so that 

uM 2 t VM2 = 1. (19) 
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From (17), Jx t Ar = 1 or, with h = uo2v02 + uo2 and 1-1 = 
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2 2 u v +v 2 
0 0 0 ' 

V2 
0 

= (1 + 3u02) - 41 + 3u02)2 - (1 - uo2)2. (20) 

Two limiting curves in (u, v) plane, (19) and (20), are shown 

in Fig. 2 which is the projection of four-dimensional phase 

space regions. As projected, the phase space is made of three 

areas: (1) area bounded by u=O, v=O and Eq. (20). Any point in 

this area is always stable and the maximum possible excusion 

is given by (u,,v,) curve, Eq. (19). (2) area bounded by Eqs. (19) 

and (20). A point in this area may or may not be stable depending 

on the value of a phase combination (2ax + 2a Y + 6). (3) area out- 

side (u yl,vM) curve. Points are all unstable regardless of their 

phase values. In all cases, the motion of a point is always along 

a hyperbola, u2 - v2 = constant, whcih is equivalent to the relation 

(9) l It should be emphasized again that Fig. 2 does not give any 

information on phases which, however, is not needed for the present 

purpose. 

In order for all particles in a beam to be stable, they must 

be initially confined within the central stable area. Distribution 

of particles in phases ax and a should be uniform but the distri- 
Y 

bution in amplitudes u and v depends on how the beam is formed. 

For the booster, the vertical emittance is independent of the mode 

of injection but the radial emittance increases when a multi-turn 

injecton is used. It is customary to take an elliptic boundary 

Wx/r + W ,< W. Y (21) 
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where vWo and rrWo are, respectively, the vertical and radial 
n 

emittance. For single-turn injection, r is unity and for four- 

turn injection, r 3 4. Eq. (21) is an ellipse in (u,v) plane 

u2/r + v2 ,< A q (4D/I+W,. (22) 

For the largest possible ellipse within the stable area, 

A = (-1 - r t 1t6rtr 7 )/(2r) 

and it touches the boundary curve, Eq. (20), at (uo9 vo)) 

(23) 

U2 = (-1 t 1 t 3r 
0 112 ) 

xG2- 

V2 = (-1 t 3+r 
0 j/2. 

v4zz 

(24) 

The largest ellipse is shown in Fig. 2 for r = 1 and 4. If w = 

+1, the point (uo, vo) given by (24) can eventually move to 

CUM, vM) on the circle, Eq. (lg), when w becomes -1, 

2 
uM 

=(1+ r-1 
VGZT 

v2, 

2 
vM 

=(I- r-1 l/2. (25) 
/cz7 

These points are marked in Fig. 2 for r = 1 - 4. For other points 

on the ellipse (22), one can calculate the largest possible ampli- 

tude with the following procedures. Take a point (ui, vi) on the 

boundary of the ellipse and calculate X and u from (11) with w = 

+ 1. Increase u and calculate w from (13) until w = -1 at u = uf. 

SThis is a mathematical expression of a statement, "Beam is always 
round", supposedly made by Ken Green. 
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The final (largest) value of v is then vf = 9 uf2 - x + 1-I. The 

resulting curve for r = 4 is plotted in Fig. 2 as a dotted curve. 

The relative increase in the radial emittance, uM2/(rA), is 

not large, the maximum value being 1.21 for r = 1. As r in- 

creases, it approaches unity. On the other hand, the relative 

increase in the vertical emittance, vM goes up with r, ap- 

proaching two asymptotically: 

r= 1 2 3 4 co 

vM2/A = 1.21 1.35 1.44 1.52 2.00 . 

In reality, the particle distribution is not uniform within the 

ellipse and the boundaries shown in Fig. 2 apply only for those 

particles with w(initia1) = tl. "Visible" emittance increase 

may therefore be much smaller than values indicated above. 

B. vx+3v Y = k t E; nx = 1, n = 3. Y 

At high energies, this resonance is expected to be the closest 

one to the operating point. The procedure for finding the maximum 

possible deformation of phase space is identical to what is used 

for 2vx t 2v = k but a certain amount of numerical work is re- Y 
quired for this case. 

The driving term arising from skew octupole field, Eq. (2), is 

D exp(i6) = -(1/96~)$dsCB;“(s)/(BP)IBx~ Byz'2 x 

exp[ibxo~xo + 3J yo@yo)1. (26) 

Two invariants are 

h = uv3w + u2, 

1-I = uv3w + v2 (27) 
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u = (108)~ Jm Kx 

V= (12)' JD/lrl KY, 

w = -(lej/s)cos(ax + 3a, + 6>, 

X = -(12fl jel/e3)D0x, 

lJ = -(12/T IEI/E~)D@~. 

From these, 

u(u2 - x t 1-I) 312 

where u 2 - A + &I E v2 must be positive. 

In 0, u> plane, there are now two regions in whbeh real 

solutions (u,, vM) of dw/du = 0 exist. 

(a) X20 and u>-0 

The boundary can be obtained by the conditions (uo, vo, w = +l) 

and (u,, vM, w = -1) where 

2 I 
uM = [(3X + p> + h2 + 14Q.J + p21/4 . 

This is analogous to the situation for 2Vx + 2Vy = k. 

(b) A<0 and X t cu?O where 5 = 7 - JriB". 

Two values of uM are possible. 

2 
uM = C(3h + l-4 + LA2 + 14Al.l + 1123/4 . 

(28) 

(29) 

(30) 

(31) 

However, for the solution with minus sign, IwI is less than one. 

Boundaries are specified by (uoJ vo, w = -1) and (u,, vM, w = -1) 

with plus sign in (31). The situation is depicted in the right- 

.hand picture on p. 8. 

Boundary curves in (u, v) plane have been obtained numerically 

from (29), (30) and (31) with plus sign and they are shown in Fig. 3. 



Boundaries (uo, vo) and (u,, vM) are for (a) whereas boundaries 

(uo', vol) and (uM1, vM1) are for (b).% A point between A and B 

with w = -1 moves along a hyperbola until it reaches a point between 

-1. The point B represents the limiting 

VM' . Coordinates of these special points 

At and B, again with w = 

case,u 
0 

1 = uM1 and vor = 

are 

A: U2 = 0, v2 = 

B . . U2 = (1 - 35 

with p = 4(1 

2/(3d-) 

h/4, v2 = (5 + <h/4 

+ 5>(1 - 35) -1/2(5 + <)-3/2 

A': u2 l/(347), v2 = l/G . 

The projected phase space is again divided into three regions as 

discussed for 2vx t 2vy = k. 

In b-b v) plane, the elliptic boundary of a beam, Eq. (21), 

takes the form 

-13- 

u2/(3r) t v2 ,< A f (24T D/Ie[)Wo. (32) 

The largest ellipse for r = 1 and 4, points of the largest dis- 

tortion for r = 1 - 4, and the maximum possible boundary of the 

beam for r = 4 are all plotted in Fig. 3. These points and 

boundaries are identical in their meanings to those in Fig. 2 but 

simple algebraic expressions for them are not available. Numerical 

results used for plotting them are given in Table 1 from which one 

can calculate the relative increase in the vertical emittance, 

vM2/A . . r 1 2 3 4 

vM2/A 1.81 1.88 1.91 1.93 

SThere is an error in the paper by Sturrock, ref. 5, pp. 176 - 179. 
For the resonance vx t 2v = k, he missed the existence of the 
region (b), with 5 = l/8,Yin (x, 11) plane. As a result, he was 
compelled to make a conclusion that there are points of arbitrarily 
small amplitudes u and v which lie outside the stable region. The 
case is properly treated in Lysenko's paper, ref. 9. 
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Note that this resonance does not give rise to any 

radial emittance when r >, 1. On the other hand, as 

increase in the vertical emittance is concerned, it 
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increase in the 

far as the 

is more danger- 

ous than 2vx + 2v = k. 
Y 

It is probably more interesting to see how much increase one 

must expect in the vertical emittance when the beam occupies an 

area which is smaller than the limiting (maximum) ellipse. The 

beam boundary is now written as 

u2/(3r) + v2 = fAI (33) 

where f is less than unity and Al(= 0.2761 from Table 1) is A of 

Eq. (32) for r = 1. For r > 1, the beam is stable if fAl does not 

exceed A that corresponds to that value of r: 

f(r=2) ,< (0.2252/0.2761) = 0.816, 

f(r=3) i (0.1945/0.2761) = 0.704, 

f(r=4) ,< (0.1736/0.2761) = 0.629 

The maximum increase in the vertical emittance is shown in Fig. 4 

as a function of f. For example, if the strength of driving term 

D, the amount of detuning IeI and the vertical emittance rWo are 

such that 

(~JTD/'IEI)W~ = 0.7 Al, 

the maximum increase in the vertical emittance is negligible for 

r = 1 (single-turn injection, radial emittance = -rrWo) but it is 

significant for r 3 3 (multi-turn injection, radial emittance 3 

371woL The vertical emittance growth will therefore become more 

"visible" as the radial emittance is increased. 

IV. Concluding Remarks 

It is not possible to make a quantitative statement beyond 

what is presented here without knowing the strength of the driving 
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term. One may be able to measure this strength by placing the 

operating point in the rectangle B in Fig. 1 and measuring the 

vertical emittance growth as a function of the radial emittance. 

This, however, is possible only for the coasting (200 MeV) beam. 

Since the strength of trim quadrupoles is not programmable, the 

operating point will move out of the rectangle, that is, away 

from the resonance when the beam is accelerated. 

Effects of the average octupole field, which are neglected 

here, may affect the amount of deformation. However, the method 

in this report is still applicable if terms of the form 

AKx4 + BK 2K 2 t CK 4 
x Y Y 

are included in the expressions for both ax and @ Y3 Eq. (8). 

Here 

A = -(1/1281~)& ds(B"'/Bp)Bx2, 
0 

B= (1/32d$ ds(B”‘/BdBx6y, 0 

and 

C = -(1/1281~)4 ds(B;"/Bp)By2. (34) 

Numerical calculations are then unavoidable and the picture in 

(1, 11) plane and in (u, v) plane will be more complex. 

The treatment given here is entirely static and no effect of 

crossing a resonance has been considered. It is quite conceivable 

that crossing one or more resonances during the acceleration con- 

tributes significantly to the increase in the emittance. 5,9,11 



For the resonance v x + 3v Y = k, the largest beam ellipse 

in b-b v> P lane 

u2/(3r) + v2 =A 

touches the boundary of the central stable area at (uo, vo). 

This point can move up to (u,, v,) on the outer boundary curve. 

See Fig. 3. 
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Table 1 

r 1 2 3 4 

A .2761 .2252 .1945 01736 

U .455 .682 
0 

.823 0925 

V 
0 

0455 .384 .345 .320 

uM 0707 .861 .964 1.044 

vM 0707 .651 .610 .579 
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